Stochastic variational inequalities: single-stage to multistage
成果类型:
Article
署名作者:
Rockafellar, R. Tyrrell; Wets, Roger J-B
署名单位:
University of Washington; University of Washington Seattle; University of California System; University of California Davis
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-016-0995-5
发表日期:
2017
页码:
331-360
关键词:
residual minimization method
optimization
摘要:
Variational inequality modeling, analysis and computations are important for many applications, but much of the subject has been developed in a deterministic setting with no uncertainty in a problem's data. In recent years research has proceeded on a track to incorporate stochasticity in one way or another. However, the main focus has been on rather limited ideas of what a stochastic variational inequality might be. Because variational inequalities are especially tuned to capturing conditions for optimality and equilibrium, stochastic variational inequalities ought to provide such service for problems of optimization and equilibrium in a stochastic setting. Therefore they ought to be able to deal with multistage decision processes involving actions that respond to increasing levels of information. Critical for that, as discovered in stochastic programming, is introducing nonanticipativity as an explicit constraint on responses along with an associated multiplier element which captures the price of information and provides a means of decomposition as a tool in algorithmic developments. That idea is extended here to a framework which supports multistage optimization and equilibrium models while also clarifying the single-stage picture.