Scenario reduction for stochastic programs with Conditional Value-at-Risk
成果类型:
Article; Proceedings Paper
署名作者:
Arpon, Sebastian; Homem-de-Mello, Tito; Pagnoncelli, Bernardo
署名单位:
Universidad Adolfo Ibanez
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-018-1298-9
发表日期:
2018
页码:
327-356
关键词:
linear-programs
optimization
DECOMPOSITION
generation
algorithms
STABILITY
摘要:
In this paper we discuss scenario reduction methods for risk-averse stochastic optimization problems. Scenario reduction techniques have received some attention in the literature and are used by practitioners, as such methods allow for an approximation of the random variables in the problem with a moderate number of scenarios, which in turn make the optimization problem easier to solve. The majority of works for scenario reduction are designed for classical risk-neutral stochastic optimization problems; however, it is intuitive that in the risk-averse case one is more concerned with scenarios that correspond to high cost. By building upon the notion of effective scenarios recently introduced in the literature, we formalize that intuitive idea and propose a scenario reduction technique for stochastic optimization problems where the objective function is a Conditional Value-at-Risk. Numerical results presented with problems from the literature illustrate the performance of the method and indicate the cases where we expect it to perform well.