Regularized nonlinear acceleration

成果类型:
Article
署名作者:
Scieur, Damien; d'Aspremont, Alexandre; Bach, Francis
署名单位:
Inria; Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); Universite PSL; Ecole Normale Superieure (ENS); Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); CNRS - Institute for Information Sciences & Technologies (INS2I)
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-018-1319-8
发表日期:
2020
页码:
47-83
关键词:
Optimization algorithms
摘要:
We describe a convergence acceleration technique for unconstrained optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.