An extreme function which is nonnegative and discontinuous everywhere

成果类型:
Article
署名作者:
Basu, Amitabh; Conforti, Michele; Di Summa, Marco
署名单位:
Johns Hopkins University; University of Padua
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-018-1322-0
发表日期:
2020
页码:
447-453
关键词:
摘要:
We consider Gomory and Johnson's infinite group model with a single row. Valid inequalities for this model are expressed by valid functions and it has been recently shown that any valid function is dominated by some nonnegative valid function, modulo the affine hull of the model. Within the set of nonnegative valid functions, extreme functions are the ones that cannot be expressed as convex combinations of two distinct valid functions. In this paper we construct an extreme function pi:R ->[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :\mathbb {R}\rightarrow [0,1]$$\end{document} whose graph is dense in Rx[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}\times [0,1]$$\end{document}. Therefore pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is discontinuous everywhere.