Discrete optimization methods for group model selection in compressed sensing

成果类型:
Article
署名作者:
Bah, Bubacarr; Kurtz, Jannis; Schaudt, Oliver
署名单位:
Stellenbosch University; RWTH Aachen University
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-020-01529-7
发表日期:
2021
页码:
171-220
关键词:
superposition codes support recovery signal recovery SPARSE UNION
摘要:
In this article we study the problem of signal recovery for group models. More precisely for a given set of groups, each containing a small subset of indices, and for given linear sketches of the true signal vector which is known to be group-sparse in the sense that its support is contained in the union of a small number of these groups, we study algorithms which successfully recover the true signal just by the knowledge of its linear sketches. We derive model projection complexity results and algorithms for more general group models than the state-of-the-art. We consider two versions of the classical iterative hard thresholding algorithm (IHT). The classical version iteratively calculates the exact projection of a vector onto the group model, while the approximate version (AM-IHT) uses a head- and a tail-approximation iteratively. We apply both variants to group models and analyse the two cases where the sensing matrix is a Gaussian matrix and a model expander matrix. To solve the exact projection problem on the group model, which is known to be equivalent to the maximum weight coverage problem, we use discrete optimization methods based on dynamic programming and Benders' decomposition. The head- and tail-approximations are derived by a classical greedy-method and LP-rounding, respectively.