Quadratic optimization with switching variables: the convex hull for n=2

成果类型:
Article
署名作者:
Anstreicher, Kurt M.; Burer, Samuel
署名单位:
University of Iowa
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-021-01671-w
发表日期:
2021
页码:
421-441
关键词:
integer nonlinear programs
摘要:
We consider quadratic optimization in variables (x, y) where 0 <= x <= y, and y is an element of {0, 1}(n). Such binary variables are commonly referred to as indicator or switching variables and occur commonly in applications. One approach to such problems is based on representing or approximating the convex hull of the set {(x, xx(T,) yy(T)) : 0 <= x <= y is an element of{0, 1}(n)}. A representation for the case n = 1 is known and has been widely used. We give an exact representation for the case n = 2 by starting with a disjunctive representation for the convex hull and then eliminating auxiliary variables and constraints that do not change the projection onto the original variables. An alternative derivation for this representation leads to an appealing conjecture for a simplified representation of the convex hull for n = 2 when the product term y(1) y(2) is ignored.
来源URL: