A sequential homotopy method for mathematical programming problems

成果类型:
Article
署名作者:
Potschka, Andreas; Bock, Hans Georg
署名单位:
Ruprecht Karls University Heidelberg
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-020-01488-z
发表日期:
2021
页码:
459-486
关键词:
optimization problems Nonlinear equations newton methods systems
摘要:
We propose a sequential homotopy method for the solution of mathematical programming problems formulated in abstract Hilbert spaces under the Guignard constraint qualification. The method is equivalent to performing projected backward Euler timestepping on a projected gradient/antigradient flow of the augmented Lagrangian. The projected backward Euler equations can be interpreted as the necessary optimality conditions of a primal-dual proximal regularization of the original problem. The regularized problems are always feasible, satisfy a strong constraint qualification guaranteeing uniqueness of Lagrange multipliers, yield unique primal solutions provided that the stepsize is sufficiently small, and can be solved by a continuation in the stepsize. We show that equilibria of the projected gradient/antigradient flow and critical points of the optimization problem are identical, provide sufficient conditions for the existence of global flow solutions, and show that critical points with emanating descent curves cannot be asymptotically stable equilibria of the projected gradient/antigradient flow, practically eradicating convergence to saddle points and maxima. The sequential homotopy method can be used to globalize any locally convergent optimization method that can be used in a homotopy framework. We demonstrate its efficiency for a class of highly nonlinear and badly conditioned control constrained elliptic optimal control problems with a semismooth Newton approach for the regularized subproblems.
来源URL: