Branch-and-bound solves random binary IPs in poly(n)-time

成果类型:
Article
署名作者:
Dey, Santanu S.; Dubey, Yatharth; Molinaro, Marco
署名单位:
University System of Georgia; Georgia Institute of Technology; Pontificia Universidade Catolica do Rio de Janeiro
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-022-01895-4
发表日期:
2023
页码:
569-587
关键词:
摘要:
Branch-and-bound is the workhorse of all state-of-the-art mixed integer linear programming (MILP) solvers. These implementations of branch-and-bound typically use variable branching, that is, the child nodes are obtained via disjunctions of the form x(j) <= left perpendicular (x) over bar (j) right perpendicular nu x(j) >= inverted right perpendicular (x) over bar (j) inverted left perpendicular, where (x) over bar is an optimal solution to the LP corresponding to the parent node. Even though modern MILP solvers are able to solve very large-scale instances efficiently, relatively little attention has been given to understanding why the underlying branch-and-bound algorithm performs so well. In this paper, our goal is to theoretically analyze the performance of the standard variable branching based branch-and-bound algorithm. In order to avoid the exponential worst-case lower bounds, we follow the common idea of considering random instances. More precisely, we consider random integer programs where the entries of the coefficient matrix and the objective function are randomly sampled. Our main result is that with good probability branch-and-bound with variable branching explores only a polynomial number of nodes to solve these instances, for a fixed number of constraints. To the best of our knowledge this is the first known such result for a standard version of branch-and-bound. We believe that this result provides an indication as to why branch-and-bound with variable branching works so well in practice.