Explicit convex hull description of bivariate quadratic sets with indicator variables
成果类型:
Article; Early Access
署名作者:
De Rosa, Antonio; Khajavirad, Aida
署名单位:
Bocconi University; Bocconi University; Lehigh University
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02173-1
发表日期:
2024
关键词:
integer nonlinear programs
relaxations
constraints
摘要:
We consider the nonconvex set Sn={(x,X,z):X=xxT,x(1-z)=0,x >= 0,z is an element of{0,1}n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}_n = \{(x,X,z): X = x x<^>T, \; x (1-z) =0,\; x \ge 0,\; z \in \{0,1\}<^>n\}$$\end{document}, which is closely related to the feasible region of several difficult nonconvex optimization problems such as the best subset selection and constrained portfolio optimization. Utilizing ideas from convex analysis and disjunctive programming, we obtain an explicit description for the closure of the convex hull of S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}_2$$\end{document} in the space of original variables. In order to generate valid inequalities corresponding to supporting hyperplanes of the convex hull of S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}_2$$\end{document}, we present a simple separation algorithm that can be incorporated in branch-and-cut based solvers to enhance the quality of existing relaxations.