FISTA is an automatic geometrically optimized algorithm for strongly convex functions

成果类型:
Article
署名作者:
Aujol, J. -F.; Dossal, Ch.; Rondepierre, A.
署名单位:
Universite de Bordeaux; Centre National de la Recherche Scientifique (CNRS); Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; Institut National des Sciences Appliquees de Toulouse; Universite Toulouse III - Paul Sabatier; Universite de Toulouse; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-023-01960-6
发表日期:
2024
页码:
449-491
关键词:
CONVERGENCE-RATES gradient methods
摘要:
In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic growth assumption. This explains why FISTA works better than the standard Forward-Backward algorithm (FB) in such a case, although FISTA is known to have a polynomial asymptotic convergence rate while FB is exponential. We provide a simple rule to tune the alpha parameter within the FISTA algorithm to reach an epsilon-solution with an optimal number of iterations. These new results highlight the efficiency of FISTA algorithms, and they rely on new non asymptotic bounds for FISTA.