The density of planar sets avoiding unit distances
成果类型:
Article
署名作者:
Ambrus, Gergely; Csiszarik, Adrian; Matolcsi, Mate; Varga, Daniel; Zsamboki, Pal
署名单位:
Szeged University; HUN-REN; HUN-REN Alfred Renyi Institute of Mathematics; Eotvos Lorand University; Budapest University of Technology & Economics
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-023-02012-9
发表日期:
2024
页码:
303-327
关键词:
chromatic number
realization
摘要:
By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdos that the density of any measurable planar set avoiding unit distances is less than 1/4. Our argument implies the upper bound of 0.2470.