No-regret algorithms in on-line learning, games and convex optimization

成果类型:
Article
署名作者:
Sorin, Sylvain
署名单位:
Sorbonne Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Cite
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-023-01927-7
发表日期:
2024
页码:
645-686
关键词:
projected subgradient methods DYNAMICAL-SYSTEMS 1st-order methods variational-inequalities monotone-operators gradient CONVERGENCE descent approximations minimization
摘要:
The purpose of this article is to underline the links between some no-regret algorithms used in on-line learning, games and convex optimization and to compare the continuous and discrete time versions.