A PTAS for the horizontal rectangle stabbing problem
成果类型:
Article
署名作者:
Khan, Arindam; Subramanian, Aditya; Wiese, Andreas
署名单位:
Indian Institute of Science (IISC) - Bangalore; Technical University of Munich
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02106-y
发表日期:
2024
页码:
607-630
关键词:
approximation algorithms
packing
摘要:
We study rectangle stabbing problems in which we are given n axis-aligned rectangles in the plane that we want to stab, that is, we want to select line segments such that for each given rectangle there is a line segment that intersects two opposite edges of it. In the horizontal rectangle stabbing problem (Stabbing), the goal is to find a set of horizontal line segments of minimum total length such that all rectangles are stabbed. In the horizontal-vertical stabbing problem (HV-Stabbing), the goal is to find a set of rectilinear (that is, either vertical or horizontal) line segments of minimum total length such that all rectangles are stabbed. Both variants are NP-hard. Chan et al. (ISAAC, 2018) initiated the study of these problems by providing constant approximation algorithms. Recently, Eisenbrand et al. (A QPTAS for stabbing rectangles, 2021) have presented a QPTAS and a polynomial-time 8-approximation algorithm for Stabbing, but it was open whether the problem admits a PTAS. In this paper, we obtain a PTAS for Stabbing, settling this question. For HV-Stabbing, we obtain a (2+epsilon)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+\varepsilon )$$\end{document}-approximation. We also obtain PTASs for special cases of HV-Stabbing: (i) when all rectangles are squares, (ii) when each rectangle's width is at most its height, and (iii) when all rectangles are delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-large, that is, have at least one edge whose length is at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, while all edge lengths are at most 1. Our result also implies improved approximations for other problems such as generalized minimum Manhattan network.
来源URL: