Relaxations and duality for multiobjective integer programming

成果类型:
Article
署名作者:
Dunbar, Alex; Sinha, Saumya; Schaefer, Andrew J.
署名单位:
Emory University; University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-023-02022-7
发表日期:
2024
页码:
577-616
关键词:
bound sets proper efficiency algorithm points
摘要:
Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective functions over a set of linear constraints and integer variables. In this paper, we present continuous, convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them. The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a weighted-sum scalarization of the MOIP. At unsupported solutions, the convex hull relaxation is not tight and a Lagrangian relaxation may provide a tighter bound. Using the Lagrangian relaxation, we define a Lagrangian dual of an MOIP that satisfies weak duality and is strong at supported solutions under certain conditions on the primal feasible region. We include a numerical experiment to illustrate that bound sets obtained via Lagrangian duality may yield tighter bounds than those from a convex hull relaxation. Subsequently, we generalize the integer programming value function to MOIPs and use its properties to motivate a set-valued superadditive dual that is strong at supported solutions. We also define a simpler vector-valued superadditive dual that exhibits weak duality but is strongly dual if and only if the primal has a unique nondominated point.
来源URL: