A first-order augmented Lagrangian method for constrained minimax optimization

成果类型:
Article
署名作者:
Lu, Zhaosong; Mei, Sanyou
署名单位:
University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02163-3
发表日期:
2025
页码:
1063-1104
关键词:
nonconvex algorithms complexity
摘要:
In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method developed in this paper. Under some suitable assumptions, an operation complexity of O(epsilon-4log epsilon-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(\varepsilon <^>{-4}\log \varepsilon <^>{-1})$$\end{document}, measured by its fundamental operations, is established for the first-order augmented Lagrangian method for finding an epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-KKT solution of the constrained minimax problems.