Unified smoothing approach for best hyperparameter selection problem using a bilevel optimization strategy
成果类型:
Article
署名作者:
Alcantara, Jan Harold; Nguyen, Chieu Thanh; Okuno, Takayuki; Takeda, Akiko; Chen, Jein-Shan
署名单位:
RIKEN; Vietnam National University of Agriculture (VNUA); Seikei University; University of Tokyo; National Taiwan Normal University
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02113-z
发表日期:
2025
页码:
479-518
关键词:
nonsmooth
摘要:
Strongly motivated from applications in various fields including machine learning, the methodology of sparse optimization has been developed intensively so far. Especially, the advancement of algorithms for solving problems with nonsmooth regularizers has been remarkable. However, those algorithms suppose that weight parameters of regularizers, called hyperparameters hereafter, are pre-fixed, but it is a crucial matter how the best hyperparameter should be selected. In this paper, we focus on the hyperparameter selection of regularizers related to the & ell;p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} function with 0 <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0