Sparsity penalized mean-variance portfolio selection: analysis and computation
成果类型:
Article
署名作者:
Sen, Buse; Akkaya, Deniz; Pinar, Mustafa c.
署名单位:
Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Ihsan Dogramaci Bilkent University
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02161-5
发表日期:
2025
页码:
281-318
关键词:
VARIABLE SELECTION
REGRESSION SHRINKAGE
optimization
regularization
approximation
formulations
relaxation
algorithms
view
摘要:
We consider the problem of mean-variance portfolio selection regularized with an & ell;0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document}-penalty term to control the sparsity of the portfolio. We analyze the structure of local and global minimizers and use our results in the design of a Branch-and-Bound algorithm coupled with an advanced start heuristic. Extensive computational results with real data as well as comparisons with an off-the-shelf and state-of-the-art (MIQP) solver are reported.