Geometric and computational hardness of bilevel programming
成果类型:
Article; Early Access
署名作者:
Bolte, Jerome; Le, Quoc-Tung; Pauwels, Edouard; Vaiter, Samuel
署名单位:
Universite de Toulouse; Universite Toulouse 1 Capitole; Toulouse School of Economics; Universite Cote d'Azur; Centre National de la Recherche Scientifique (CNRS); Universite Cote d'Azur
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-025-02229-w
发表日期:
2025
关键词:
Optimization
relaxations
摘要:
We first show a simple but striking result in bilevel optimization: unconstrained C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>\infty $$\end{document} smooth bilevel programming is as hard as general extended-real-valued lower semicontinuous minimization. We then proceed to a worst-case analysis of box-constrained bilevel polynomial optimization. We show in particular that any extended-real-valued semi-algebraic function, possibly non-continuous, can be expressed as the value function of a polynomial bilevel program. Secondly, from a computational complexity perspective, the decision version of polynomial bilevel programming is one level above NP in the polynomial hierarchy (Sigma 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _2<^>p$$\end{document}-hard). Both types of difficulties are uncommon in non-linear programs for which objective functions are typically continuous and belong to the class NP. These results highlight the irremediable hardness attached to general bilevel optimization and the necessity of imposing some form of regularity on the lower level.