Nonsmooth nonconvex-nonconcave minimax optimization: Primal-dual balancing and iteration complexity analysis

成果类型:
Article; Early Access
署名作者:
Li, Jiajin; Zhu, Linglingzhi; So, Anthony Man-Cho
署名单位:
University of British Columbia; University System of Georgia; Georgia Institute of Technology; Chinese University of Hong Kong
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-025-02197-1
发表日期:
2025
关键词:
proximal algorithms descent methods error-bounds minimization CONVERGENCE
摘要:
Nonconvex-nonconcave minimax optimization has gained widespread interest over the last decade. However, most existing works focus on variants of gradient descent-ascent (GDA) algorithms, which are only applicable to smooth nonconvex-concave settings. To address this limitation, we propose a novel algorithm named smoothed proximal linear descent-ascent (smoothed PLDA), which can effectively handle a broad range of structured nonsmooth nonconvex-nonconcave minimax problems. Specifically, we consider the setting where the primal function has a nonsmooth composite structure and the dual problem possesses the Kurdyka-& Lstrok;ojasiewicz (K & Lstrok;) property with exponent theta is an element of[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [0,1)$$\end{document}. We introduce a novel convergence analysis framework for smoothed PLDA, the key components of which are our newly developed nonsmooth primal error bound and dual error bound. Using this framework, we show that smoothed PLDA can find both & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-game-stationary points and & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-optimization-stationary points of the problems of interest in O(& varepsilon;-2max{2 theta,1})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon <^>{-2\max \{2\theta ,1\}})$$\end{document} iterations. Furthermore, when theta is an element of[0,12]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [0,\frac{1}{2}]$$\end{document}, smoothed PLDA achieves the optimal iteration complexity of O(& varepsilon;-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon <^>{-2})$$\end{document}. To further demonstrate the effectiveness and wide applicability of our analysis framework, we show that certain max-structured problem possesses the K & Lstrok; property with exponent theta=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =0$$\end{document} under mild assumptions. As a by-product, we establish algorithm-independent quantitative relationships among various stationarity concepts, which may be of independent interest.