Convexification techniques for fractional programs

成果类型:
Article
署名作者:
He, Taotao; Liu, Siyue; Tawarmalani, Mohit
署名单位:
Shanghai Jiao Tong University; Carnegie Mellon University; Purdue University System; Purdue University
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02131-x
发表日期:
2025
页码:
107-149
关键词:
trust-region subproblem global optimization concave envelopes convex-hull polytope REPRESENTATIONS algorithm binary number
摘要:
This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate 0-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\mathord {-}1$$\end{document} problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of 0-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\mathord {-}1$$\end{document} variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.
来源URL: