Second-order methods for quartically-regularised cubic polynomials, with applications to high-order tensor methods

成果类型:
Article; Early Access
署名作者:
Cartis, Coralia; Zhu, Wenqi
署名单位:
University of Oxford
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-025-02235-y
发表日期:
2025
关键词:
case evaluation complexity global optimization search minimization
摘要:
There has been growing interest in high-order tensor methods for nonconvex optimization, with adaptive regularization, as they possess better/optimal worst-case evaluation complexity globally and faster convergence asymptotically. These algorithms crucially rely on repeatedly minimizing nonconvex multivariate Taylor-based polynomial sub-problems, at least locally. Finding efficient techniques for the solution of these sub-problems, beyond the second-order case, has been an open question. This paper proposes a second-order method, Quadratic Quartic Regularisation (QQR), for efficiently minimizing nonconvex quartically-regularized cubic polynomials, such as the ARp sub-problem (Birgin et al. Math Program 163:359-368, 2017) with p=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=3$$\end{document}. Inspired by Nesterov (Quartic regularity, 2022), QQR approximates the third-order tensor term by a linear combination of quadratic and quartic terms, yielding (possibly nonconvex) local models that are solvable to global optimality. In order to achieve accuracy & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} in the first-order criticality of the sub-problem in finitely many iterations, we show that the error in the QQR method decreases either linearly or by at least O(& varepsilon;4/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon <^>{4/3})$$\end{document} for locally convex iterations, while in the nonconvex case, by at least O(& varepsilon;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon )$$\end{document}; thus improving, on these types of iterations, the general cubic-regularization bound. Preliminary numerical experiments indicate that two QQR variants perform competitively with state-of-the-art approaches such as ARC (also known as ARp with p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}), achieving either lower objective value or iteration counts.
来源URL: