Submodular maximization and its generalization through an intersection cut lens

成果类型:
Article
署名作者:
Xu, Liding; Liberti, Leo
署名单位:
Centre National de la Recherche Scientifique (CNRS); Institut Polytechnique de Paris; Ecole Polytechnique
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02059-2
发表日期:
2025
页码:
341-377
关键词:
integer variables sets inequalities algorithm matroids PROGRAMS
摘要:
We study a mixed-integer set S:={(x,t)is an element of{0,1}nxR:f(x)>= t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}:=\{(x,t) \in \{0,1\}<^>n \times \mathbb {R}: f(x) \ge t\}$$\end{document} arising in the submodular maximization problem, where f is a submodular function defined over {0,1}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}<^>n$$\end{document}. We use intersection cuts to tighten a polyhedral outer approximation of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}. We construct a continuous extension F over bar f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\textsf{F}}_f$$\end{document} of f, which is convex and defined over the entire space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}. We show that the epigraph epi(F over bar f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{epi}\,}}(\bar{\textsf{F}}_f)$$\end{document} of F over bar f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\textsf{F}}_f$$\end{document} is an S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-free set, and characterize maximal S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-free sets containing epi(F over bar f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{epi}\,}}(\bar{\textsf{F}}_f)$$\end{document}. We propose a hybrid discrete Newton algorithm to compute an intersection cut efficiently and exactly. Our results are generalized to the hypograph or the superlevel set of a submodular-supermodular function over the Boolean hypercube, which is a model for discrete nonconvexity. A consequence of these results is intersection cuts for Boolean multilinear constraints. We evaluate our techniques on max cut, pseudo Boolean maximization, and Bayesian D-optimal design problems within a MIP solver.
来源URL: