From coordinate subspaces over finite fields to ideal multipartite uniform clutters

成果类型:
Article
署名作者:
Abdi, Ahmad; Lee, Dabeen
署名单位:
University of London; London School Economics & Political Science; Korea Advanced Institute of Science & Technology (KAIST)
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02155-3
发表日期:
2025
页码:
823-861
关键词:
摘要:
Take a prime power q, an integer n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, and a coordinate subspace S subset of GF(q)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq GF(q)<^>n$$\end{document} over the Galois field GF(q). One can associate with S an n-partite n-uniform clutter C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}, where every part has size q and there is a bijection between the vectors in S and the members of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. In this paper, we determine when the clutter C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether q is 2, 4, a higher power of 2, or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} depends solely on the underlying matroid of S. Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and tau=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =2$$\end{document} Conjectures for this class of clutters.
来源URL: