On the directional asymptotic approach in optimization theory
成果类型:
Article
署名作者:
Benko, Matus; Mehlitz, Patrick
署名单位:
University of Vienna; Philipps University Marburg
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02089-w
发表日期:
2025
页码:
859-937
关键词:
sequential optimality condition
mathematical programs
constraint qualifications
complementarity constraints
equilibrium constraints
variational analysis
extremum conditions
equality-type
exact penalty
normal cones
摘要:
As a starting point of our research, we show that, for a fixed order gamma >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \ge 1$$\end{document}, each local minimizer of a rather general nonsmooth optimization problem in Euclidean spaces is either M-stationary in the classical sense (corresponding to stationarity of order 1), satisfies stationarity conditions in terms of a coderivative construction of order gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, or is asymptotically stationary with respect to a critical direction as well as order gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in a certain sense. By ruling out the latter case with a constraint qualification not stronger than directional metric subregularity, we end up with new necessary optimality conditions comprising a mixture of limiting variational tools of orders 1 and gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. These abstract findings are carved out for the broad class of geometric constraints and gamma:=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :=2$$\end{document}, and visualized by examples from complementarity-constrained and nonlinear semidefinite optimization. As a byproduct of the particular setting gamma:=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :=1$$\end{document}, our general approach yields new so-called directional asymptotic regularity conditions which serve as constraint qualifications guaranteeing M-stationarity of local minimizers. We compare these new regularity conditions with standard constraint qualifications from nonsmooth optimization. Further, we extend directional concepts of pseudo- and quasi-normality to arbitrary set-valued mappings. It is shown that these properties provide sufficient conditions for the validity of directional asymptotic regularity. Finally, a novel coderivative-like variational tool is used to construct sufficient conditions for the presence of directional asymptotic regularity. For geometric constraints, it is illustrated that all appearing objects can be calculated in terms of initial problem data.
来源URL: