Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices
成果类型:
Article
署名作者:
Hirai, Hiroshi; Iwamasa, Yuni; Oki, Taihei; Soma, Tasuku
署名单位:
Nagoya University; Kyoto University; Hokkaido University; Research Organization of Information & Systems (ROIS); Institute of Statistical Mathematics (ISM) - Japan
刊物名称:
MATHEMATICAL PROGRAMMING
ISSN/ISSBN:
0025-5610
DOI:
10.1007/s10107-024-02158-0
发表日期:
2025
页码:
941-984
关键词:
discrete convex-optimization
brascamp-lieb inequalities
2-lattice polyhedra
algorithms
rank
摘要:
We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=& sum;k=1mAktckxk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A[c] :=\sum _{k=1}<^>m A_k t<^>{c_k} x_k, $$\end{document}where Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k$$\end{document} are matrices over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}, xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_k$$\end{document} are noncommutative variables, ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_k$$\end{document} are integer weights, and t is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. in Comput Complex 26:717-763, 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and for membership of rank-2 Brascamp-Lieb polytopes.
来源URL: