Solving project scheduling problems by minimum cut computations

成果类型:
Article
署名作者:
Möhring, RH; Schulz, AS; Stork, F; Uetz, M
署名单位:
Technical University of Berlin; Massachusetts Institute of Technology (MIT); Hasselt University; Maastricht University
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
发表日期:
2003
页码:
330-350
关键词:
project scheduling resource constraints linear programming relaxation Lagrangian relaxation minimum cut
摘要:
In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in manufacturing, production planning, project management, and elsewhere. It is one of the most intractable problems in operations research, and has therefore become a popular playground for the latest optimization techniques, including virtually all local search paradigms. We show that a somewhat more classical mathematical programming approach leads to both competitive feasible solutions and strong lower bounds, within reasonable computation times. The basic ingredients of our approach are the Lagrangian relaxation of a time-indexed integer programming formulation and relaxation-based list scheduling, enriched with a useful idea from recent approximation algorithms for machine scheduling problems. The efficiency of the algorithm results from the insight that the relaxed problem can be solved by computing a minimum cut in an appropriately defined directed graph. Our computational study covers different types of resource-constrained project scheduling problems, based on several notoriously hard test sets, including practical problem instances from chemical production planning.