Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them

成果类型:
Article
署名作者:
Dietvorst, Berkeley J.; Simmons, Joseph P.; Massey, Cade
署名单位:
University of Chicago; University of Pennsylvania
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2016.2643
发表日期:
2018
页码:
1155-1170
关键词:
decision making decision aids heuristics and biases forecasting confidence
摘要:
Although evidence-based algorithms consistently outperform human forecasters, people often fail to use them after learning that they are imperfect, a phenomenon known as algorithm aversion. In this paper, we present three studies investigating how to reduce algorithm aversion. In incentivized forecasting tasks, participants chose between using their own forecasts or those of an algorithm that was built by experts. Participants were considerably more likely to choose to use an imperfect algorithm when they could modify its forecasts, and they performed better as a result. Notably, the preference for modifiable algorithms held even when participants were severely restricted in the modifications they could make (Studies 1-3). In fact, our results suggest that participants' preference for modifiable algorithms was indicative of a desire for some control over the forecasting outcome, and not for a desire for greater control over the forecasting outcome, as participants' preference for modifiable algorithms was relatively insensitive to the magnitude of the modifications they were able to make (Study 2). Additionally, we found that giving participants the freedom to modify an imperfect algorithm made them feel more satisfied with the forecasting process, more likely to believe that the algorithm was superior, and more likely to choose to use an algorithm to make subsequent forecasts (Study 3). This research suggests that one can reduce algorithm aversion by giving people some control-even a slight amount-over an imperfect algorithm's forecast.