Control-Enabling Adaptive Nonlinear System Identification
成果类型:
Article
署名作者:
Zisis, Konstantinos; Bechlioulis, Charalampos P.; Rovithakis, George A.
署名单位:
Aristotle University of Thessaloniki; University of Patras
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2021.3106870
发表日期:
2022
页码:
3715-3721
关键词:
Adaptive systems
trajectory
nonlinear dynamical systems
Mathematical model
Linear systems
uncertainty
transient analysis
Adaptive identification
persistency of excitation (PE)
摘要:
In this article, we rely on the theoretical foundations of radial basis function neural networks to form an adaptive parameter estimation problem, which we solve using the recently introduced prescribed performance control methodology. Such combination results in a compact user-configurable adaptive nonlinear system identification methodology that can be used to retrieve the open-loop nonlinear plant dynamics in any compact region of interest.