Appointed-Time and Attack-Free Bipartite Synchronization of Generic Linear Multiagent Systems Over Directed Switching Networks

成果类型:
Article
署名作者:
Zhao, Yu; Zhou, Yuan; Huang, Panfeng; Chen, Guanrong
署名单位:
Northwestern Polytechnical University; City University of Hong Kong
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2022.3159558
发表日期:
2022
页码:
4498-4513
关键词:
Synchronization Protocols switches observers TOPOLOGY Multi-agent systems Network topology Appointed settling time attack-free observer bipartite synchronization motion planning technique
摘要:
This article derives a solution to the appointed-time and attack-free bipartite synchronization problem for generic linear multiagent systems over directed switching networks accommodating cooperative and antagonistic interactions. Herein, appointed-time means that the settling time is independent of any parameters and is preappointed in advance. Attack-free requires that the communication channel is protected, which means that no state and observer information exchange is allowed, and only measured relative output information is available when designing protocols. Firstly, by virtue of Pontryagin's maximum principle, a distributed appointed-time state-feedback protocol is developed for directed switching networks, which tackles the appointed-time bipartite synchronization problem from a motion-planning approach based on sampling measurements, but takes the risk of facing cyber attacks on information exchange channels. Then, to be free of network attacks, a sampling-based attack-free observer using relative output information is designed to observe bipartite synchronization errors at an appointed time. By combining the appointed-time state-feedback protocol with the sampling-based attack-free observer, an attack-free output-feedback protocol is developed without requiring the state or control input information. The attack-free appointed-time bipartite synchronization problem is thus resolved. Both the state-feedback and attack-free protocols show the ability of disturbance rejection to the nonidentical bounded disturbances. To our knowledge, it is the first time to solve the appointed-time and attack-free bipartite synchronization problem for generic linear multiagents based on state- and output-feedback information, respectively. Finally, simulations verify the effectiveness of the two protocols.