Distribution-Free Inventory Risk Pooling in a Multilocation Newsvendor
成果类型:
Article
署名作者:
Govindarajan, Aravind; Sinha, Amitabh; Uichanco, Joline
署名单位:
Amazon.com; University of Michigan System; University of Michigan
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2020.3719
发表日期:
2021
页码:
2272-2291
关键词:
newsvendor networks
distribution-free optimization
Inventory management
摘要:
We study a multilocation newsvendor network when the only information available on the joint distribution of demands are the values of its mean vector and covariance matrix. We adopt a distributionally robust model to find inventory levels that minimize the worst-case expected cost among the distributions consistent with this information. This problem is NP-hard. We find a closed-form tight bound on the expected cost when there are only two locations. This bound is tight under a family of joint demand distributions with six support points. For the general case, we develop a computationally tractable upper bound on the worst-case expected cost if the costs of fulfilling demands have a nested structure. This upper bound is the optimal value of a semidefinite program whose dimensions are polynomial in the number of locations. We propose an algorithm that can approximate general fulfillment cost structures by nested structures, yielding a computationally tractable heuristic for distributionally robust inventory optimization on general newsvendor networks. We conduct experiments on networks resembling U.S. e-commerce distribution networks to show the value of a distributionally robust approach over a stochastic approach that assumes an incorrect demand distribution.