Solving Nonlinear Filtering Problems Using a Tensor Train Decomposition Method

成果类型:
Article
署名作者:
Li, Sijing; Wang, Zhongjian; Yau, Stephen S. -T.; Zhang, Zhiwen
署名单位:
University of Hong Kong; University of Chicago; Tsinghua University
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2022.3223319
发表日期:
2023
页码:
4405-4412
关键词:
Duncan-Mortensen-Zakai (DMZ) equation forward Kolmogorov equations (FKEs) nonlinear filtering (NLF) problems real-time algorithm tensor train (TT) decomposition method
摘要:
In this article, we propose an efficient numerical method to solve nonlinear filtering (NLF) problems. Specifically, we use the tensor train decomposition method to solve the forward Kolmogorov equation (FKE) arising from the NLF problem. Our method consists of offline and online stages. In the offline stage, we use the finite difference method to discretize the partial differential operators involved in the FKE and extract low-dimensional structures in the solution tensor using the tensor train decomposition method. In the online stage using the precomputed low-rank approximation tensors, we can quickly solve the FKE given new observation data. Therefore, we can solve the NLF problem in a real-time manner. Finally, we present numerical results to show the efficiency and accuracy of the proposed method in solving up to six-dimensional NLF problems.