An LMI-Based Robust Nonlinear Adaptive Observer for Disturbed Regression Models
成果类型:
Article
署名作者:
Rios, Hector; de Loza, Alejandra Ferreira; Efimov, Denis; Franco, Roberto
署名单位:
Universite de Lille; Centre National de la Recherche Scientifique (CNRS); Inria
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2023.3342890
发表日期:
2024
页码:
4035-4041
关键词:
Heuristic algorithms
Perturbation methods
observers
CONVERGENCE
Adaptation models
Linear matrix inequalities
Approximation algorithms
Adaptive control
parameter identification
regression models
摘要:
This article deals with the problem of time-varying parameter identification in dynamical regression models affected by disturbances. The disturbances comprise time-dependent external perturbations and nonlinear unmodeled dynamics. With this aim in mind, we propose a robust nonlinear adaptive observer. The algorithm ensures the asymptotic convergence of the parameter identification error to an acceptably small region around the origin in the presence of disturbances. The synthesis of the adaptive observer is given in terms of linear matrix inequalities, providing a constructive design method. An academic example and a low inertia power system illustrate the robustness and the applicability of the proposed adaptive observer for the time-varying parameter identification problem.