Distributionally Robust Kalman Filtering With Volatility Uncertainty

成果类型:
Article
署名作者:
Han, Bingyan
署名单位:
Hong Kong University of Science & Technology (Guangzhou)
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2024.3522192
发表日期:
2025
页码:
4000-4007
关键词:
Kalman filters Covariance matrices Filtering noise uncertainty Symmetric matrices vectors Target tracking State-space methods optimization Bicausal optimal transport (BCOT) minimax optimization robust Kalman filtering
摘要:
This work presents a distributionally robust Kalman filter to address uncertainties in noise covariance matrices and predicted covariance estimates. We adopt a distributionally robust formulation using bicausal optimal transport to characterize a set of plausible alternative models. The optimization problem is transformed into a convex nonlinear semi-definite programming problem and solved using the trust-region interior point method with the aid of $LDL<^>\top$ decomposition. The empirical outperformance is demonstrated through target tracking and pairs trading.