Optimal Decision Making Under Strategic Behavior
成果类型:
Article
署名作者:
Tsirtsis, Stratis; Tabibian, Behzad; Khajehnejad, Moein; Singla, Adish; Scholkoepf, Bernhard; Gomez-Rodriguez, Manuel
署名单位:
Max Planck Society; Monash University; Max Planck Society; Max Planck Society
刊物名称:
MANAGEMENT SCIENCE
ISSN/ISSBN:
0025-1909
DOI:
10.1287/mnsc.2021.02567
发表日期:
2025
关键词:
strategic machine learning
decision making
mechanism design
Stackelberg games
摘要:
We are witnessing an increasing use of data -driven predictive models to inform decisions in high -stakes situations, from lending and hiring to university admissions. As decisions have implications for individuals and society, there is increasing pressure on decision makers to be transparent about their decision policies. At the same time, individuals may use knowledge, gained by transparency, to invest effort strategically in order to maximize their chances of receiving a beneficial decision. Our goal is to find decision policies that are optimal in terms of utility in such a strategic setting. First, we characterize how strategic investment of effort by individuals leads to a change in the feature distribution. Using this characterization, we show that, in general, optimal decision policies are hard to find in polynomial time, and there are cases in which deterministic policies are suboptimal. Then, we demonstrate that, if the cost individuals pay to change their features satisfies a natural monotonicity assumption, we can narrow down the search for the optimal policy to a particular family of decision policies with a set of desirable properties, which allow for a highly effective polynomial time -heuristic search algorithm using dynamic programming. Finally, under no assumptions on the cost, we develop an iterative search algorithm that is guaranteed to converge to locally optimal decision policies. Experiments on synthetic and real credit card data illustrate our theoretical findings and show that the decision policies found by our algorithms achieve higher utility than those that do not account for strategic behavior.