l0 Factor Analysis: A P-Stationary Point Theory
成果类型:
Article
署名作者:
Wang, Linyang; Zhu, Bin; Liu, Wanquan
署名单位:
Sun Yat Sen University
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2025.3552869
发表日期:
2025
页码:
6050-6063
关键词:
Covariance matrices
optimization
vectors
Sparse matrices
Eigenvalues and eigenfunctions
Convex functions
CONVERGENCE
Principal Component Analysis
Matrix decomposition
linear programming
l(0) norm
Alternating direction method of multipliers (ADMM)
factor analysis (FA)
low-rank plus sparse matrix decomposition
nonconvex nonsmooth optimization
摘要:
Factor analysis is a widely used modeling technique for stationary time series, which achieves dimensionality reduction by revealing a hidden low-rank plus sparse structure of the covariance matrix. Such an idea of parsimonious modeling has also been important in the field of systems and control. In this article, a nonconvex nonsmooth optimization problem involving the l(0) norm is constructed in order to achieve the low-rank and sparse additive decomposition of the sample covariance matrix. We establish the existence of an optimal solution and characterize these solutions via the concept of proximal stationary points. Furthermore, an ADMM algorithm is designed to solve the l(0) optimization problem, and a subsequence convergence result is proved under reasonable assumptions. Finally, numerical experiments demonstrate the effectiveness of our method in comparison with some alternatives in the literature.