Distributed State Estimation for Discrete-Time Linear Systems: A Canonical Decomposition-Based Approach
成果类型:
Article
署名作者:
Gao, Rui; Yang, Guang-Hong
署名单位:
Northeastern University - China; Northeastern University - China
刊物名称:
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN/ISSBN:
0018-9286
DOI:
10.1109/TAC.2025.3540959
发表日期:
2025
页码:
4825-4832
关键词:
Observers
Eigenvalues and eigenfunctions
Matrix decomposition
vectors
Linear systems
Linear matrix inequalities
indexes
Design methodology
training
Kalman filters
Decomposition form
Detectability
distributed state estimation (DSE)
graph theory
摘要:
In this article, we are concerned with the problem of distributed state estimation for discrete-time linear systems using a network of agents, where the measurement of each agent suffers from the lack of detectability with the system dynamics. The existing results on this topic require stringent condition either on the network connectivity or on the detectability. In contrast, a new form of distributed observer, which ensures that all agents asymptotically estimate the system state under the mild network connectivity condition without increasing the need for the detectability condition, is proposed. Necessary and sufficient conditions for the existence of the proposed distributed observer are established. The key to the proposed method is a refined canonical decomposition form of the coefficient matrices of the system which is introduced leveraging the real Jordan canonical form, the Popov-Belevitch-Hautus test, the matrix permutation, and the observable decomposition. The methodology is applied to estimate the positions of a group of Pendubots to demonstrate its effectiveness.