Stochastic transportation-inventory network design problem

成果类型:
Article
署名作者:
Shu, J; Teo, CP; Shen, ZJM
署名单位:
Nanyang Technological University; National University of Singapore; Singapore-MIT Alliance for Research & Technology Centre (SMART); Massachusetts Institute of Technology (MIT); National University of Singapore; University of California System; University of California Berkeley
刊物名称:
OPERATIONS RESEARCH
ISSN/ISSBN:
0030-364X
DOI:
10.1287/opre.1040.0140
发表日期:
2005
页码:
48-60
关键词:
摘要:
We study the stochastic transportation-inventory network design problem involving one supplier and multiple retailers. Each retailer faces some uncertain demand, and safety stock must be maintained to achieve suitable service levels. However, risk-pooling benefits may be achieved by allowing some retailers to serve as distribution centers for other retailers. The problem is to determine which retailers should serve as distribution centers and how to allocate the other retailers to the distribution centers. Shen et al. (2003) formulated this problem as a set-covering integer-programming model. The pricing problem that arises from the column generation algorithm gives rise to a new class of the submodular function minimization problem. In this paper, we show that by exploiting certain special structures, we can solve the general pricing problem in Shen et al. efficiently. Our approach utilizes the fact that the set of all lines in a two-dimension plane has low VC-dimension. We present computational results on several instances of sizes ranging from 40 to 500 retailers. Our solution technique can be applied to a wide range of other concave cost-minimization problems.