Stochastic Power Generation Unit Commitment in Electricity Markets: A Novel Formulation and a Comparison of Solution Methods

成果类型:
Article
署名作者:
Cerisola, Santiago; Baillo, Alvaro; Fernandez-Lopez, Jose M.; Ramos, Andres; Gollmer, Ralf
署名单位:
Comillas Pontifical University; Santander; University of Duisburg Essen
刊物名称:
OPERATIONS RESEARCH
ISSN/ISSBN:
0030-364X
DOI:
10.1287/opre.1080.0593
发表日期:
2009
页码:
32-46
关键词:
摘要:
We propose a stochastic unit commitment model for a power generation company that takes part in an electricity spot market. The relevant feature of this model is its detailed representation of the spot market during a whole week, including seven day-ahead market sessions and the corresponding adjustment market sessions. The adjustment market sessions can be seen as an hour-ahead market mechanism. This representation takes into account the influence that the company's decisions exert on the market-clearing price by means of a residual demand curve for each market session. We introduce uncertainty in the form of several possible spot market outcomes for each day, which leads to a weekly scenario tree. The model also represents in detail the operation of the company's generation units. The model leads to large-scale mixed linear-integer problems that are hard to solve with commercial optimizers. This suggests the use of alternative solution methods. We test four solution approaches with a realistic numerical example in the context of the Spanish electricity spot market. The first is a direct solution with a commercial optimizer, which illustrates the mentioned limitations. The second is a standard Lagrangean relaxation algorithm. The third and fourth methods are two original variants of Benders decomposition for multistage stochastic integer programs. The first Benders decomposition algorithm builds approximations for the recourse function relaxing the integrality constraints of the subproblems. The second variant strengthens these cuts by performing one iteration of the Lagrangean of each subproblem. We analyze the advantages of these four methods and compare the results.