Optimization in Online Content Recommendation Services: Beyond Click-Through Rates

成果类型:
Article
署名作者:
Besbes, Omar; Gur, Yonatan; Zeevi, Assaf
署名单位:
Columbia University; Stanford University
刊物名称:
M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
ISSN/ISSBN:
1523-4614
DOI:
10.1287/msom.2015.0548
发表日期:
2016
页码:
15-33
关键词:
online services dynamic assortment selection Data-Driven Optimization Recommendation systems content marketing digital marketing path data
摘要:
A new class of online services allows Internet media sites to direct users from articles they are currently reading to other content they may be interested in. This process creates a browsing path along which there is potential for repeated interaction between the user and the provider, giving rise to a dynamic optimization problem. A key metric that often underlies this recommendation process is the click-through rate (CTR) of candidate articles. Whereas CTR is a measure of instantaneous click likelihood, we analyze the performance improvement that one may achieve by some lookahead that accounts for the potential future path of users. To that end, by using some data of user path history at major media sites, we introduce and derive a representation of content along two key dimensions: clickability, the likelihood to click to an article when it is recommended; and engageability, the likelihood to click from an article when it hosts a recommendation. We then propose a class of heuristics that leverage both clickability and engageability, and provide theoretical support for favoring such path-focused heuristics over myopic heuristics that focus only on clickability (no lookahead). We conduct a live pilot experiment that measures the performance of a practical proxy of our proposed class, when integrated into the operating system of a worldwide leading provider of content recommendations, allowing us to estimate the aggregate improvement in clicks per visit relative to the CTR-driven current practice. The documented improvement highlights the importance and the practicality of efficiently incorporating the future path of users in real time.
来源URL: