Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation
成果类型:
Article
署名作者:
Chow, Vincent S.; Puterman, Martin L.; Salehirad, Neda; Huang, Wenhai; Atkins, Derek
署名单位:
British Columbia Cancer Agency; University of British Columbia
刊物名称:
PRODUCTION AND OPERATIONS MANAGEMENT
ISSN/ISSBN:
1059-1478
DOI:
10.1111/j.1937-5956.2011.01226.x
发表日期:
2011
页码:
418-430
关键词:
surgical scheduling
mixed integer programming
Monte Carlo simulation
scheduling guidelines
hospital bed management
摘要:
High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstream bed utilization. This paper describes a transparent and portable approach to improve scheduling practices, which combines a Monte Carlo simulation model and a mixed integer programming (MIP) model. For a specified surgical schedule, the simulation samples from historical case records and predicts bed requirements assuming no resource constraints. The MIP model complements the simulation model by scheduling both surgeon blocks and patient types to reduce peak bed occupancies. Scheduling guidelines were developed from the optimized schedules to provide surgical planners with a simple and implementable alternative to the MIP model. This approach has been tested and delivered to planners in a health authority in British Columbia, Canada. The models have been used to propose new surgical schedules and to evaluate the impact of proposed system changes on ward congestion.
来源URL: