On the causality and plausibility of treatment effects in operations management research

成果类型:
Article
署名作者:
Mithas, Sunil; Chen, Yanzhen; Lin, Yatang; Silveira, Alysson De Oliveira
署名单位:
State University System of Florida; University of South Florida; Hong Kong University of Science & Technology; Hong Kong University of Science & Technology
刊物名称:
PRODUCTION AND OPERATIONS MANAGEMENT
ISSN/ISSBN:
1059-1478
DOI:
10.1111/poms.13863
发表日期:
2022
页码:
4558-4571
关键词:
baseline bias causality differential treatment effect bias Empirical Research endogeneity observational studies Quasi-experiment selection
摘要:
Empirical research in operations management (OM) has made rapid strides in the last 30 years, and increasingly, OM researchers are leveraging methods used in the econometrics and statistics literature to assess the causal effects of interventions. We discuss the two key challenges in assessing causality with observational data (i.e., baseline bias, differential treatment effect bias) and how dominant identification approaches such as matching, instrumental variables, regression discontinuity, difference-in-differences, and fixed effects deal with such challenges. We surface the key underlying assumptions of different causal estimation methods and discuss how OM scholars have used these methods in the last few years. We hope that reflecting on the plausibility and substantive meaning of underlying assumptions regarding different identification strategies in a particular context will lead to a better conceptualization, execution, evaluation, dissemination, and consumption of OM research. We conclude with a few thoughts that authors and reviewers may find helpful in their research as they engage in discourse related to causality.
来源URL: