Bayesian inference for hospital quality in a selection model

成果类型:
Article
署名作者:
Geweke, J; Gowrisankaran, G; Town, RJ
署名单位:
University of Iowa; University of Iowa; Harvard University; National Bureau of Economic Research; University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
ECONOMETRICA
ISSN/ISSBN:
0012-9682
DOI:
10.1111/1468-0262.00444
发表日期:
2003
页码:
1215-1238
关键词:
instrumental variables prospective payment Probit model care pneumonia mortality severity CHOICE
摘要:
This paper develops new econometric methods to infer hospital quality in a model with discrete dependent variables and nonrandom selection. Mortality rates in patient discharge records are widely used to infer hospital quality. However, hospital admission is not random and some hospitals may attract patients with greater unobserved severity of illness than others. In this situation the assumption of random admission leads to spurious inference about hospital quality. This study controls for hospital selection using a model in which distance between the patient's residence and alternative hospitals are key exogenous variables. Bayesian inference in this model is feasible using a Markov chain Monte Carlo posterior simulator, and attaches posterior probabilities to quality comparisons between individual hospitals and groups of hospitals. The study uses data on 74,848 Medicare patients admitted to 114 hospitals in Los Angeles County from 1989 through 1992 with a diagnosis of pneumonia. It finds the smallest and largest hospitals to be of the highest quality. There is strong evidence of dependence between the unobserved severity of illness and the assignment of patients to hospitals, whereby patients with a high unobserved severity of illness are disproportionately admitted to high quality hospitals. Consequently a conventional probit model leads to inferences about quality that are markedly different from those in this study's selection model.
来源URL: