Instrumental variable estimation of nonlinear errors-in-variables models
成果类型:
Article
署名作者:
Schennach, Susanne M.
署名单位:
University of Chicago
刊物名称:
ECONOMETRICA
ISSN/ISSBN:
0012-9682
DOI:
10.1111/j.1468-0262.2007.00736.x
发表日期:
2007
页码:
201-239
关键词:
semiparametric estimation
Nonparametric Regression
CONSISTENT ESTIMATION
identification
CONVERGENCE
rates
摘要:
This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged-in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite-sample properties of the estimator are investigated through Monte Carlo simulations.