RISK OF BAYESIAN INFERENCE IN MISSPECIFIED MODELS, AND THE SANDWICH COVARIANCE MATRIX

成果类型:
Article
署名作者:
Mueller, Ulrich K.
署名单位:
Princeton University
刊物名称:
ECONOMETRICA
ISSN/ISSBN:
0012-9682
DOI:
10.3982/ECTA9097
发表日期:
2013
页码:
1805-1849
关键词:
maximum-likelihood-estimation consistent heteroskedasticity estimator BEHAVIOR
摘要:
It is well known that, in misspecified parametric models, the maximum likelihood estimator (MLE) is consistent for the pseudo-true value and has an asymptotically normal sampling distribution with sandwich covariance matrix. Also, posteriors are asymptotically centered at the MLE, normal, and of asymptotic variance that is, in general, different than the sandwich matrix. It is shown that due to this discrepancy, Bayesian inference about the pseudo-true parameter value is, in general, of lower asymptotic frequentist risk when the original posterior is substituted by an artificial normal posterior centered at the MLE with sandwich covariance matrix. An algorithm is suggested that allows the implementation of this artificial posterior also in models with high dimensional nuisance parameters which cannot reasonably be estimated by maximizing the likelihood.
来源URL: