Efficient Estimation of the Parameter Path in Unstable Time Series Models
成果类型:
Article
署名作者:
Mueller, Ulrich K.; Petalas, Philippe-Emmanuel
署名单位:
Princeton University
刊物名称:
REVIEW OF ECONOMIC STUDIES
ISSN/ISSBN:
0034-6527
DOI:
10.1111/j.1467-937X.2010.00603.x
发表日期:
2010
页码:
1508-1539
关键词:
maximum-likelihood-estimation
asymptotic equivalence
stochastic volatility
nuisance parameter
inference
tests
regression
variance
摘要:
The paper investigates inference in non-linear and non-Gaussian models with moderately time-varying parameters. We show that for many decision problems, the sample information about the parameter path can be summarized by an artificial linear and Gaussian model, at least asymptotically. The approximation allows for computationally convenient path estimators and parameter stability tests. Also, in contrast to standard Bayesian techniques, the artificial model can be robustified so that in misspecified models, decisions about the path of the (pseudo-true) parameter remain as good as in a corresponding correctly specified model.