Oddness of the number of Nash equilibria: The case of polynomial payoff functions
成果类型:
Article
署名作者:
Bich, Philippe; Fixary, Julien
署名单位:
Paris School of Economics
刊物名称:
GAMES AND ECONOMIC BEHAVIOR
ISSN/ISSBN:
0899-8256
DOI:
10.1016/j.geb.2024.04.005
发表日期:
2024
页码:
510-525
关键词:
Nash equilibrium
Polynomial payoff functions
Generic oddness
Network games
摘要:
In 1971, Wilson (1971) proved that almost all finite games have an odd number of mixed Nash equilibria. Since then, several other proofs have been given, but always for mixed extensions of finite games. In this paper, we present a new oddness theorem for large classes of polynomial payoff functions and semi -algebraic sets of strategies. Additionally, we provide some applications to recent models of games on networks such that Patacchini-Zenou's model about juvenile delinquency and conformism (Patacchini and Zenou, 2012), Calv & oacute;-Armengol-Patacchini-Zenou's model about social networks in education (Calv & oacute;-Armengol et al., 2009), Konig-Liu-Zenou's model about R&D networks (K & ouml;nig et al., 2019), Helsley-Zenou's model about social networks and interactions in cities (Helsley and Zenou, 2014).
来源URL: