Nonparametric identification of dynamic decision processes with discrete and continuous choices

成果类型:
Article
署名作者:
Blevins, Jason R.
署名单位:
University System of Ohio; Ohio State University
刊物名称:
QUANTITATIVE ECONOMICS
ISSN/ISSBN:
1759-7323
DOI:
10.3982/QE117
发表日期:
2014
页码:
531-554
关键词:
Nonparametric identification Markov decision processes dynamic decision processes discrete choice continuous choice
摘要:
This paper establishes conditions for nonparametric identification of dynamic optimization models in which agents make both discrete and continuous choices. We consider identification of both the payoff function and the distribution of unobservables. Models of this kind are prevalent in applied microeconomics and many of the required conditions are standard assumptions currently used in empirical work. We focus on conditions on the model that can be implied by economic theory and assumptions about the data generating process that are likely to be satisfied in a typical application. Our analysis is intended to highlight the identifying power of each assumption individually, where possible, and our proofs are constructive in nature.
来源URL: