Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation

成果类型:
Article
署名作者:
Hoque, Md. Asmaul; Gerken, James B.; Stahl, Shannon S.
署名单位:
University of Wisconsin System; University of Wisconsin Madison
刊物名称:
SCIENCE
ISSN/ISSBN:
0036-8571
DOI:
10.1126/science.adk5097
发表日期:
2024-01-12
页码:
173-178
关键词:
coupled electron-transfer c-h epoxidation porphyrins olefins crystal centers SYSTEM salts
摘要:
The reactivity of molecular oxygen is crucial to clean energy technologies and green chemical synthesis, but kinetic barriers complicate both applications. In synthesis, dioxygen should be able to undergo oxygen atom transfer to two organic molecules with perfect atom economy, but such reactivity is rare. Monooxygenase enzymes commonly reductively activate dioxygen by sacrificing one of the oxygen atoms to generate a more reactive oxidant. Here, we used a manganese-tetraphenylporphyrin catalyst to pair electrochemical oxygen reduction and water oxidation, generating a reactive manganese-oxo at both electrodes. This process supports dioxygen atom transfer to two thioether substrate molecules, generating two equivalents of sulfoxide with a single equivalent of dioxygen. This net dioxygenase reactivity consumes no electrons but uses electrochemical energy to overcome kinetic barriers.