Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis

成果类型:
Article
署名作者:
Ram, Ranit; Xia, Lu; Benzidi, Hind; Guha, Anku; Golovanova, Viktoria; Garzon Manjon, Alba; Llorens Rauret, David; Sanz Berman, Pol; Dimitropoulos, Marinos; Mundet, Bernat; Pastor, Ernest; Celorrio, Veronica; Mesa, Camilo A.; Das, Aparna M.; Pinilla-Sanchez, Adrian; Gimenez, Sixto; Arbiol, Jordi; Lopez, Nuria; Garcia de Arquer, F. Pelayo
署名单位:
Barcelona Institute of Science & Technology; Universitat Politecnica de Catalunya; Institut de Ciencies Fotoniques (ICFO); Barcelona Institute of Science & Technology; Consejo Superior de Investigaciones Cientificas (CSIC); Autonomous University of Barcelona; Barcelona Institute of Science & Technology; Catalan Institute of Nanoscience & Nanotechnology (ICN2); Barcelona Institute of Science & Technology; Autonomous University of Barcelona; Universite de Rennes; Centre National de la Recherche Scientifique (CNRS); University of Tokyo; Diamond Light Source; Universitat Jaume I; ICREA
刊物名称:
SCIENCE
ISSN/ISSBN:
0036-9594
DOI:
10.1126/science.adk9849
发表日期:
2024-06-21
页码:
1373-1380
关键词:
oxygen evolution electrocatalysis catalyst oxidation STABILITY CHALLENGES metals oxides
摘要:
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80 degrees C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.