Mechanically strong yet metabolizable supramolecular plastics by desalting upon phase separation
成果类型:
Article
署名作者:
Cheng, Yiren; Hirano, Eiji; Wang, Hao; Kuwayama, Motonobu; Meijer, E. W.; Huang, Hubiao; Aida, Takuzo
署名单位:
University of Tokyo; RIKEN; Eindhoven University of Technology; Eindhoven University of Technology; Southeast University - China
刊物名称:
SCIENCE
ISSN/ISSBN:
0036-10554
DOI:
10.1126/science.ado1782
发表日期:
2024-11-22
页码:
875-881
关键词:
polymers
polyethylene
performance
thermosets
vitrimers
FUTURE
摘要:
Plastics that can metabolize in oceans are highly sought for a sustainable future. In this work, we report the noncovalent synthesis of unprecedented plastics that are mechanically strong yet metabolizable under biologically relevant conditions owing to their dissociative nature with electrolytes. Salt-bridging sodium hexametaphosphate with di- or tritopic guanidinium sulfate in water forms a cross-linked supramolecular network, which is stable unless electrolytes are resupplied. This unusual stability is caused by a liquid-liquid phase separation that expels sodium sulfate, generated upon salt bridging, into a water-rich phase. Drying the remaining condensed liquid phase yields glassy plastics that are thermally reshapable, such as thermoplastics, and usable even in aqueous media with hydrophobic parylene C coating. This approach can be extended to polysaccharide-based supramolecular plastics that are applicable for three-dimensional printing.